Simulation of ductile rupture using Zset

Jacques Besson

Centre des Matériaux, Mines-ParisTech, CNRS UMR 7633, BP 87, 91 003 Evry, France

AIMS

• Development of physically based models describing ductile damage: void nucleation, void growth, void coalescence
• Implementation of models in Finite Element codes (Zset, Zmat,...)
• Prediction of crack initiation and propagation in test specimens and actual structures
• Increase the reliability of these predictions
• The methodology can be applied to:
 — nuclear industry (pressure vessel steels, nuclear fuel cladding, ...)
 — GAZ/OIL transportation, offshore engineering
 — Aerospace/Aeronautics

MODELS

• Models derived from the Gurson model (1977)
• One damage variable \(f \): void volume fraction
• Definition (implicit) of a scalar effective stress \(\sigma_e = \sigma_i(\mathbf{f}, f) \)
 \[
 \frac{\sigma^2}{\sigma_e^2} + 2qf \cos h \left(\frac{3f}{\sigma_e^2} \right) - 1 - \eta f \frac{\partial \mathbf{f}}{\partial \sigma} = 0
 \]
 \(\sigma_i \): can be any isotropic (von Mises/Tresca) or anisotropic (Hill, Barlat,...) stress measure (accounting for plastic anisotropy)
• \(\sigma_K \): weighted average stress : \(\sigma_K = \sum_{i=1}^{n} \sigma_i \sigma_{ii} \) (accounting for anisotropic ductility)
• \(f_i \): effective porosity (\(f_i(f) \)) (accounting for void coalescence)
• Plastic yielding \(\dot{\mathbf{f}} = \sigma_e - R(p) \), \(R(p) \): flow stress
• Plastic flow \(\dot{\mathbf{f}} = (1-f)^p \frac{\partial \mathbf{f}}{\partial \sigma} \)
• Damage evolution \(f = (1-f)^p \) trace (\(\varepsilon_i \)) + \(A_n(\ldots) \) \(\Sigma \)
• Kinematic hardening can also be described: \(\dot{\varepsilon} = \dot{\varepsilon} - A \)
• Other models: Rousselier, Lemaitre,...

SIMULATION OF CT AND SENB SPECIMENS (Grade X100 Steel)

- Simulation of \(J \)—\(\Delta a \) curves (anisotropy)

Contact : jacques.besson@mines-paristech.fr

SIMULATION OF FLAT TO SLANT RUPTURE TRANSITION

- with Lode parameter controlled nucleation
 - \(\dot{\varepsilon}_0 \rightarrow \) eigenvalues: \(p_1 \geq p_2 \geq p_3 \)
 - Lode parameter \(L = \frac{p_2}{p_1 - p_3} \)
 - \(A_n \): function of \(L \) and maximum for \(L = 0 \)

NON-LOCAL MODELLING OF DAMAGE AND CRACKING

- Damage growth leads to softening, localization and consequently to mesh size dependence
- The problem can be addressed using “non-local” models
- Diffuse damaged zone (red), no mesh size dependence, remeshing, crack insertion

RECENT PUBLICATIONS