SImulation des Matériaux et des Structures


The objective of the SIMS (SImulation des Matériaux et des Structures) cluster is to have good representations of the behavior and the breaking of materials in computation codes. There are therefore studies with a strong digital component including software development, and research conducted in collaboration with other teams, to compare the models developed with experimental results. Collaborations are done with many french or foreign teams.

This activity is based on the functional group that develops and maintains the computer resources of the Centre des Matériaux, in particular parallel computers.





Research themes




This theme highlights the interaction between different research axes such as : acquisition of 2D, 3D and 4D images, measurement of thermomechanical fields, image analysis and meshing from experimental images or derived from random models, the intensive computation, the reduction of the models and the processing of the massive data whether they are of experimental origin or generated by simulations. It concerns the development of numerical methods for data processing. For example, the reduction of non-linear models has largely been inspired by methods developed for image processing. In the hyper-reduction, a mechanical model defined on a reduced mesh makes it possible to have an estimate of a complete stress field.

The tensorial representation of data is the appropriate formal framework to facilitate the comparison of these approaches. In the future, new collaboration protocols will be developed in the context of digital mechanics. This will concern the technological means implemented (means of acquisition, data storage, calculation, etc.), the numerical methods developed, but also the working methods including the training of technicians and engineers.




The elasto-visco-plastic constitutive laws of materials constitute today an arsenal applicable to the different scales of the engineer: industrial components of transport and energy where the efficiency of the formulation and the programming is at the first plan until the detailed description of the elements of matter, polycrystals and composites with complex morphologies.

The multiscale approaches allow to build a hierarchy of models starting from the crystalline plasticity for metals to the multi-mechanism models of macroscropic plasticity. Validation of this corpus of laws involves confronting 2D, 3D and 4D field measurements : kinematic, temperature, elastic deformation and crystalline orientation or polymer chains.

The mechanics of generalized continuous media are used to describe the effects of scales on the viscoplasticity of metals and polymers : effects of grain sizes, precipitates, pores, etc. Finally, the method of phase fields coupled to mechanics aims to simulate the evolution of microstructures (phase changes, interface migrations and grain boundaries, oxidation, etc.) under mechanical stress.





Excessive monotonic or cyclic deformation and the aging of materials and structures lead to the development of instabilities ranging from necking to localization in shear bands or of Portevin - Le Chatelier, to finally lead to rupture. The detection of these modes and the simulation of post-bifurcation and crack propagation states require regularization methods based on the mechanics of generalized continuous media (micromorphic approach of plasticity and gradient damage).




The transition from location to crack initiation and propagation remains a major difficulty, even if the recent advances validated by the confrontation with 2D and 3D kinematic field measurements show the relevance of the laws of behavior and damage developed. These modes of instability are also present within the microstructure of materials. The question of transmitting microscopic instabilities to macroscopic localization is largely open today. Understanding these mechanisms will optimize the architecture of the materials.






Latest publications


+ de publications


Anna Ask, Samuel Forest, Benoit Appolaire, Kais Ammar. Microstructure evolution in deformed polycrystals predicted by a diffuse interface Cosserat approach Advanced Modeling and Simulation in Engineering Sciences, SpringerOpen, 2020, 7 (1), ⟨10.1186/s40323-020-00146-5⟩

I.B.C.M. Rocha, P. Kerfriden, F.P. van der Meer. Micromechanics-based surrogate models for the response of composites: A critical comparison between a classical mesoscale constitutive model, hyper-reduction and neural networks European Journal of Mechanics - A/Solids, Elsevier, 2020, 82, pp.103995. ⟨10.1016/j.euromechsol.2020.103995⟩

Henry Proudhon, Maxime Pelerin, Andrew King, Wolfgang Ludwig. In situ 4D mechanical testing of structural materials: The data challenge Current Opinion in Solid State and Materials Science, Elsevier, 2020, pp.100834. ⟨10.1016/j.cossms.2020.100834⟩

Raphaël Langlois, Raphael Cusset, Jerome Hosdez, Vincent Bonnand, Benoît Blaysat, Léa Menut-Tournadre, Jan Neggers, Michel Coret, Joseph Henry, Véronique Doquet, Michel Grediac, Vincent Chiaruttini, Martin Poncelet, Henry Proudhon, Nathalie Limodin, Julien Rethore. Multi-partner benchmark experiment of fatigue crack growth measurements. Experimental benchmark on fatigue crack growth with mixed mode aspect and plasticity effect Preprint, 2020

Pauline Bonnet, V. A. Yastrebov, P. Queutey, Alban Leroyer, Anne Mangeney, Olivier Castelnau, A. Sergeant, E. Stutzmann, J-P Montagner. Modelling iceberg capsize in the open ocean Preprint, 2020

Youssef Hammadi, David Ryckelynck, Amin El-Bakkali. Reduced Bond Graph via machine learning for nonlinear multiphysics dynamic systems Preprint, 2020

Yazid Madi, Yasuhiro Shinohara, Jacques Besson. Effect of prestrain on ductility and toughness in a high-strength line pipe steel International Journal of Fracture, Springer Verlag, 2020, ⟨10.1007/s10704-020-00442-6⟩

Laurent Lacourt, David Ryckelynck, Samuel Forest, Victor Rancourt, Sylvain Flouriot. Hyper‐reduced direct numerical simulation of voids in welded joints via image‐based modeling International Journal for Numerical Methods in Engineering, Wiley, 2020, ⟨10.1002/nme.6320⟩

Ashok Rajpurohit, Sébastien Joannès, Vicky Singery, Philippe Sanial, Lucien Laiarinandrasana. Hybrid Effect in In-Plane Loading of Carbon/Glass Fibre Based Inter- and Intraply Hybrid Composites Journal of Composites Science, MDPI, 2020, 4 (1), pp.6. ⟨10.3390/jcs4010006⟩

Geralf Hütter, Karam Sab, Samuel Forest. Kinematics and constitutive relations in the stress-gradient theory: interpretation by homogenization International Journal of Solids and Structures, Elsevier, In press, ⟨10.1016/j.ijsolstr.2020.02.014⟩


SImulation des Matériaux et des Structures - MINES ParisTech
Plan du site
Mentions légales © 2014 MINES ParisTech